Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Optimization of the swirl gas microbubble generator for a liquid mercury target vessel

Ikeda, Tsubasa; Kogawa, Hiroyuki; Naoe, Takashi; Kawamura, Shunsuke; Tanaka, Nobuatsu*; Futakawa, Masatoshi

no journal, , 

In the mercury target of the pulsed spallation neutron source at J-PARC, pressure waves are generated by the high-intensity pulsed-proton beam bombardment, resulting in inducing cavitation. Because the cavitation causes severe erosion damages on the mercury enclosure vessel made of stainless steel, suppressing the pressure waves and the cavitation are crucial issues to realize stable target operations at rated proton beam power of 1 MW. Gas microbubbles injection into flowing mercury is one of the prospective techniques to suppress pressure waves. At the J-PARC, a swirl-flow bubble-generator has been developed to generate microbubbles and installed in the mercury target. In order to improve the performance of the pressure wave suppression by increasing the amount of microbubbles, effects of the vane angle and throttling ratio of the Venturi on the amount of microbubbles were parametrically investigated through water experiments. The experimental results showed that the amount of the microbubbles was increased with decreasing the throttling ratio of the Venturi.

1 (Records 1-1 displayed on this page)
  • 1